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ABSTRACT: Numerically exact nonadiabatic eigenfunctions are
computed for a two-dimensional conical intersection with circular
symmetry, for which a pseudorotation quantum number is
conserved and all eigenstates are doubly degenerate. In the
calculations reported here, the conical intersection is submerged,
with energy below the zero point level. The complete real-valued
vibrational-electronic eigenfunctions are visualized using Hunter’s
exact factorization for the total vibrational amplitude factor and
color for the electronic factor. The zero-point levels have nonzero
amplitude at the conical intersection. Nodes in the degenerate
nonadiabatic eigenfunctions are classified as accidental if they can be
moved or removed by a change in degenerate basis and as essential
if they cannot. An integer electronic index defines the order of the nodes for nonadiabatic eigenfunctions by simple closed
counterclockwise line integrals. Higher eigenstates can have accidental conical nodes around the conical intersection and essential
nodes of varying circular orders at the conical intersection. The signs of the essential nodes are all opposite the sign of the conical
intersection and the signed node orders obey sum rules. Even for submerged conical intersections, the appearance of the exact
eigenstates motivates use of signed, half-odd-integral, pseudorotation quantum numbers j. Essential nodes of absolute order (|j| −
1/2) are located on the conical intersection for |j| greater than or equal to 3/2. The eigenfunctions around essential first order
nodes are right circular cones with their vertex at the conical intersection.

■ INTRODUCTION

Soon after Born and Oppenheimer published their fundamental
paper on the separation of electronic and vibrational motions,1

von Neumann and Wigner established that potential energy
surfaces in polyatomic molecules are likely to intersect, which
can cause a breakdown of the Born−Oppenheimer approx-
imation.2 The intersections between surfaces have the geometry
of a right elliptical cone. Later, Jahn and Teller proved that
degenerate electronic states in many point groups would split
their degeneracy by lowering their symmetry away from a
conical intersection at the high symmetry geometry.3 Moffit
and Liehr treated a conical intersection with circular symmetry
in the nonadiabatic limit where the vibrational-electronic
coupling and vibrational forces are comparable.4 Later,
Longuet-Higgins et al. analyzed the adiabatic limit for the
same model,5 finding two vibrational periods per electronic
period (a precursor of Berry’s geometric phase6,7) and a half-
odd-integer quantum number8 for what is now called
pseudorotation.9 Conical intersections and their higher dimen-
sional analogues are now appreciated as widely important for
photochemistry.10−14 Because of their symmetry, Jahn−Teller
conical intersections are the simplest type.15−18

In the static Jahn−Teller effect, the molecule effectively
adopts one of a few equivalent low symmetry equilibrium
geometries.15,18 For a dynamical Jahn−Teller effect, inter-
conversion between equivalent low symmetry geometries is
feasible and the average structure can recover the higher
symmetry15,18,19 even if the high symmetry geometry has zero
probability. When the Jahn−Teller coupling is also weak,15 the
adiabatic potential energy of the Jahn−Teller conical
intersection becomes energetically accessible. However, the
lowest energy eigenstates of such systems are in a deeply
quantum regime of nonadiabatic dynamics, where the concept
of a potential surface should be abandoned8 and semiclassical
and adiabatic intuition fail. Weak dynamical Jahn−Teller effects
are so common in molecules that it took over a decade to find
experimental evidence for the Jahn−Teller effect.19 This paper
discusses wave functions at the high symmetry geometry under
weak dynamical Jahn−Teller coupling for the highest symmetry
conical intersection.
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For nonadiabatic systems, Hunter developed a factorization
that parallels the Born−Oppenheimer factorization in many
ways. In Hunter’s exact factorization,20,21 each normalized
eigenfunction ψm(r,q) is written as a product of a marginal
vibrational factor,

and a conditional electronic factor

Each vibrational factor is square-normalized with respect to
integration over all vibrational coordinates. Each conditional
electronic factor is square-normalized, as a function of the
electronic coordinates r, for every set of vibrational coordinates
q on which it depends parametrically. This factorization has
been useful for nonadiabatic problems22,23 and extended to
treat nonadiabatic dynamics.24,25 Reference 26 exploited the
fact that, if only two electronic states (x and y) are involved, the
electronic factor at each point in the vibrational coordinate
space can be fully specified (in character and phase) by the
electronic angle

ψ ψΘ ≡ ⟨ | ⟩ ⟨ | ⟩

= ⟨ | ⟩ ⟨ | ⟩

y x

y x

q( ) atan2( , )

atan2( K , K )

m m m

m m (3)

where atan2 returns angles over a 2π range. Θm(q) does not
depend on the division in eq 2. Representing the positive
vibrational factor by amplitude contours and the signed
electronic factor by color (a colored exact factorization) allows
complete visualization of real-valued nonadiabatic eigenfunc-
tions with a single map.26

Although the structure of marginal vibrational and condi-
tional electronic factors parallels the Born−Oppenheimer
factorization, Hunter’s exact factorization differs from the
Born−Oppenheimer factorization in two key ways: first,
nonadiabatic electronic factors can be different for each
vibrational-electronic eigenstate; second, nonadiabatic vibra-
tional factors need not have nodes. The Born−Oppenheimer
approximation requires a sum of vibrational-electronic products
for such nonadiabatic states. In both factorizations, the separate
factors may not be allowed wave functions; the exact factors
may not have continuous derivatives in the adiabatic limit and
the Born−Oppenheimer factors may not be single-valued
around a conical intersection (Berry phase). The Born−
Oppenheimer factorization is quite naturally connected to
spectroscopy measurements that depend on one-electron
operators (which can image one electronic factor in a sum),
while Hunter’s exact factorization is natural for diffraction and
imaging measurements that probe the total vibrational
probability density.26

For diatomics, the division used to define the electronic
factor is made possible by the absence of nodes in the
vibrational factor .27 This occurs because is the square root
of the total vibrational probability density obtained by tracing
over the electronic states and because the vibrational
amplitudes on different electronic states are unlikely to all
have a zero at exactly the same place unless required by
symmetry.28 As a result, nodes in the dominant adiabatic wave
function are avoided by a continuous change in electronic
character in which a nonadiabatically coupled state “peeks
through” at and around the dominant node. This nodeless
property is exploited in use of the exact factorization for
nonadiabatic dynamics.24,25 Recently, it has been shown that

accidental nodes can occur if the dimensionality of the
vibrational coordinate space equals or exceeds the number of
coupled electronic states.26 Such nodes have the shape of a
right elliptical cone with the node at the vertex (conical nodes).
In principle, this result does not contradict the absence of true
vibrational nodes for an infinite number of coupled electronic
states. In practice, it suggests observable weakly avoided
vibrational zeroes of low dimensionality in the total vibrational
probability density.26

This paper uses the colored exact factorization to examine
the nodes of exact nonadiabatic eigenfunctions at a conical
intersection with circular symmetry. The conical intersections
studied here are submerged below the zero point energy. This
high symmetry model is identical to that studied by Moffit and
Liehr,4 by Longuet-Higgins et al.,5 and by Judd.29 It is also a
higher symmetry version of the submerged conical intersection
used to model experiments that measured loss of electronic
alignment on a ∼100 fs time scale30,31 and slower loss of
electronic coherence32 in a doubly degenerate electronic state
of a silicon naphthalocyanine.
Recent work has discussed the adiabatic effects required to

generate nonadiabatic wave function amplitude at a conical
intersection in terms of compensating divergent nonadiabatic
corrections33 or compensating discontinuities in the adiabatic
factors.23 The amplitude and phase behavior around a conical
intersection are critical for nonadiabatic tunneling.34−36 The
nonadiabatic eigenfunctions obtained here are consistent with
conjectures about nonzero amplitude at a conical intersec-
tion.23,33 At the conical intersection studied here, essential
nodes in the nonadiabatic eigenfunctions can be required by
symmetry. It will be shown that these conical nodes and higher
order nodes have lowest radial exponents determined by the
pseudorotation quantum number.

■ THEORY
Using the diabatic electronic basis {|x⟩,|y⟩} and dimensionless
normal coordinates, the circularly symmetric Jahn−Teller
Hamiltonian37 is (divided by ℏ)

ω ω

ω ω

̂ = ̂ + ̂ + ̂ + ̂ ̂

+ ̂ | ⟩⟨ | − | ⟩⟨ | + ̂ | ⟩⟨ | + | ⟩⟨ |
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2

2
2
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2

1 2 (4)

where ω is the vibrational frequency, qî and p ̂i are the
dimensionless normal coordinate position and momentum
operators (i = 1 or 2) for asymmetric vibrations, I ̂ = |x⟩⟨x| + |y⟩
⟨y| is the electronic identity operator, and d is the vibrational
displacement. The first line is an isotropic two-dimensional
harmonic oscillator Hamiltonian. The second line contains
vibrational-electronic couplings. This Hamiltonian separately
commutes with two mutually noncommuting reflection
operators σv and σd, and thus all energy eigenvalues are doubly
degenerate.38 These reflection operators have the following
effects32 on the asymmetric coordinates and the electronic basis
states:

σ σ= + = −q q q q,v 1 1 v 2 2 (5a)

σ σ| ⟩ = +| ⟩ | ⟩ = −| ⟩x x y y,v v (5b)

and

σ σ= − = +q q q q,d 1 1 d 2 2 (5c)

σ σ| ⟩ = +| ⟩ | ⟩ = +| ⟩x y y x,d d (5d)
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Eigenstates can be chosen so that they are simultaneously
eigenstates of the Hamiltonian and of either reflection operator.
Figure 1 shows the two adiabatic potential energy surfaces

obtained by neglecting the momentum operators and diagonal-

izing the resulting electronic Hamiltonian at each coordinate.
Color indicates the coordinate-dependent electronic character
and phase for each surface, which have been chosen for
maximum continuity. The two adiabatic potential surfaces have
circular symmetry, a Jahn−Teller conical intersection at the
origin, and a lower surface minimum below it at Vmin = −(1/2)
ωd2 = −(Dω). (Dω) is known as the Jahn−Teller stabilization
energy,39−41 and its definition exactly parallels that of the
Marcus reorganization energy42 for a totally symmetric
coordinate. In Figure 1, the zero point energy is marked by

black rings on the potential energy surfaces. In some sense, only
about half of the zero point energy is available to each of the
two coordinates. Even so, the conical intersection is submerged
below the zero point energy. The light blue to orange color
discontinuities indicate π phase shifts along q2 = 0 after one
circuit around the conical intersection. The location of this
discontinuity is arbitrary, but the necessity for such a “cut” was
first noted by Mead and Truhlar,43 and it can be regarded as a
consequence of Berry’s geometric phase.6

Longuet-Higgins et al. discovered that the circularly
symmetric Jahn−Teller Hamiltonian can be extended to reveal
a rigorously conserved quantum number5 for what is now called
pseudorotation.9 Subsequent work by Hougen37 and Oka44 has
emphasized that the form of this quantum number depends on
the phase convention (it is not the total angular momentum as
stated in refs 4 and 5, see ref 8). In order to use the current
standard phase conventions, we extend the Hamiltonian by
regarding the electronic states |x⟩ and |y⟩ as −cos θ and −sin θ
[these choices most resemble the standard doubly degenerate
2D particle in a square box states (nx,ny) = (2,1) and (1,2),
respectively]. These two electronic states span λ= ±1 within a
complete set of electronic states of the form exp(iλθ), where θ
is a continuous electronic rotation angle and λ is the electronic
angular momentum projection quantum number, which may
take on any integer value. Within this extended basis set, the
electronic operators |x⟩⟨x| − |y⟩⟨y| and |x⟩⟨y| + |y⟩⟨x| in the
Hamiltonian on the second line of eq 4 may be regarded as
restrictions of 2 cos(2θ) and −2 sin(2θ), respectively. Taking
q1 = ρ cos ϕ and q2 = ρ sin ϕ, where ρ and ϕ are the standard
coordinates for an isotropic two-dimensional harmonic
oscillator,45 the Longuet-Higgins extended Hamiltonian thus
has a vibrational-electronic interaction (second line of eq 4)
given by

ω ρ θ ϕ̂ = ̂ ̂ − ̂dH 2 cos(2 )ev (6)

Taking q1 and q2 as the standard b1g and b2g normal modes for a
square symmetric molecule,37 a positive displacement d in eq 4
gives the Jahn−Teller effect on a particle in a square 2D
box46−48 expected from the Hellmann−Feynman theorem.49

The extended Hamiltonian does not depend on the
pseudorotation angle ϕ + (θ/2) orthogonal to 2θ − ϕ. The
cyclic coordinate50,51 ϕ + (θ/2) thus gives rise to a conserved
pseudorotation quantum number λ= +j ( /2) where is the
quantum number for the vibrational angular momentum
conjugate to ϕ (any multiple of j is conserved). Since is an
integer and λ = ±1, this pseudorotation quantum number j has
been chosen half-odd-integral,8 a choice motivated by the
appearance of the eigenfunctions below. j is a signed quantum
number with complex-valued eigenstates, all energy levels are
doubly degenerate with respect to the sign of j.
For the computations presented in this paper, we use a direct

product of one-dimensional harmonic oscillator vibrational
basis states in the dimensionless normal coordinates q1 and q2.
The 1D harmonic oscillator matrix elements are also chosen to
follow the phase convention in ref 45, which assumes that the
rightmost lobe at positive q always has positive amplitude. With
this phase convention, the complex-valued isotropic two-
dimensional harmonic oscillator basis states obey
σ | ⟩ = | − ⟩v, v,v .52 This is consistent with the phase
convention of Condon and Shortley and electronic angular
momentum projection basis states that obey σv|λ⟩ = |−λ⟩.53
(This phase convention differs from those of Moffitt and Liehr4

Figure 1. Adiabatic potential energy surfaces and coordinate
dependent electronic character for the model Hamiltonian. The
vibrational frequency is ω = 200 cm−1 and the Jahn−Teller
stabilization energy is (Dω) = 10 cm−1. Color represents adiabatic
electronic character |ψelec(q1,q2)⟩ according to the color wheel at the
bottom. The conical intersection at q1 = q2 = 0 and E = 0 is submerged
below the zero-point energy of Ezp = 181 cm−1 (black curve). The
lower adiabatic potential surface descends from the conical
intersection to its minimum at Emin = −(Dω) around the circle (q1

2

+ q2
2)1/2 = d. An adiabatic phase discontinuity in electronic character

must occur for both the inner (solid) and outer (mesh) surfaces, is
arbitrarily placed along q2 = 0 and is visible as an angular color
discontinuity from orange |y⟩ to light blue −|y⟩. Starting and stopping
at the discontinuity, a counterclockwise path around either adiabatic
surface rotates halfway around the color wheel in a counterclockwise
direction.
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and of Oka.44) Together, these establish that degenerate energy
eigenstates of the pseudorotation quantum number may be
found from the corresponding pair of degenerate σv eigenstates
as |m, ±j⟩ = (|m,+⟩ ± i|m,−⟩)/21/2. Such complex-valued
eigenstates exhibit the circular symmetry of the Hamiltonian.
For Jahn−Teller stabilization energies that are small relative

to the vibrational frequency, second-order perturbation
theory44 leads to the following expression for the energies

ω ω λ= + − +E D(v 1) 2( )[ 1]jv,
(2)

(7)

In eq 7, the vibrational quantum number v and the
pseudorotation quantum number j on the left combine to
unambiguously determine the relative signs of the vibrational
( ) and electronic (λ) angular momentum quantum numbers
on the right. Since = − −v, (v 2)... v and λ= ± 1, a given

λ= +j ( /2) can only arise in one way for each v. Equation 7
contains an isotropic 2D harmonic oscillator energy ω(v + 1),
Jahn−Teller stabilization along both coordinates [−2(Dω)],
and a typical internal angular momentum coupling54 con-
tribution to the energy ω λ− D[ 2( ) ]. Equation 7 shows that the
energy depends on the relative sign of and λ, not their
individual signs. The form of this last term can be expected
based on the analogy to vibrational-vibrational angular
momentum coupling discussed by Oka.44

■ COMPUTATIONAL METHODS
Computations use a basis state approach to enable high local
resolution in the vibrational coordinates for study of the nodes.
States are calculated using a truncated vibronic Hamiltonian
matrix that includes n one-dimensional harmonic oscillator
basis states for each coordinate, so that there are n2 vibrational
basis states on each of the two diabatic electronic basis states.
Diagonalizing this Hamiltonian matrix yields 2n2 nonadiabatic
eigenstates. The harmonic oscillator basis states are all centered
at the origin. Off-diagonal matrix elements in dimensionless
normal coordinates are calculated analytically.45 The truncated
Hamiltonian is numerically diagonalized using the DEVCSF
routine from the IMSL library,55 which calculates eigenvectors
and eigenvalues using an implicit QR algorithm56 (which does
not respect other symmetries in the Hamiltonian). Four steps
are taken to generate unique eigenstate symmetries and phases.
First, a numerically stable basis set rotation for σd symmetry

32 is
applied to each pair of degenerate eigenvectors before sorting
into σd eigenvalues of +1 and −1. Second, each pair of
degenerate states is then basis-set-rotated by π/4 to generate σv
symmetry states,32 which are sorted into states with eigenvalues
of +1 and −1. Third, for each σv eigenstate, the overall sign is
then changed, if necessary, to make the basis state coefficient
with the largest magnitude positive [so states have dominant +
|x⟩ or + |y⟩ electronic character]. Fourth, for each σd eigenstate,
the overall sign is changed, if necessary, to make the largest

magnitude basis state coefficient on x positive [so states have
dominant (|x⟩ + |y⟩)/21/2 or (|x⟩ − |y⟩)/21/2 electronic
character]. In cases where these rules decide the sign based on
finite numerical precision, sign adjustments are made for
consistency between figures.
For a vibrational frequency of 200 cm−1 and a reorganization

energy of 10 cm−1, increasing the number of harmonic
oscillator basis states for each vibration from 13 to 25 (from
a total of 338 to a total of 1250 vibronic states) indicates that
the 12 lowest eigenvalues are all converged to within 2 × 10−12

cm−1 and that all of their 338 common normalized basis state
coefficients are converged to within 4.3 × 10−10. Higher energy
states or larger stabilization energies can require a larger basis to
establish convergence (see the Supporting Information). The
lowest 12 eigenvalue pairs are degenerate beyond the 14th digit
(to within 2 × 10−12 cm−1). With the basis states used,
eigenstates of σv have a systematic pattern of zeros in their
coefficients;32 all coefficients that should be zero by symmetry
have magnitudes of less than 2 × 10−14. Using a basis of 25
normalized harmonic oscillator eigenfunctions for each
coordinate on a discrete 2D grid with 0.01 spacing over the
domain [−9,9], the 12 lowest two-dimensional eigenfunctions
are orthogonal to within 4.8 × 10−14 and normalized to within
2.2 × 10−12. The normalized eigenfunctions are converged at all
grid points to within 10−14.
For several Jahn−Teller stabilization energies, Table 1 gives

the quantum numbers and numerical energy eigenvalues for the
six lowest energy levels. Dominant basis state quantum
numbers and second order perturbation theory expressions
for the energies from eq 7 are in the columns at left. Each
energy level is doubly degenerate, so these levels correspond to
the 12 lowest eigenstates.
The nonadiabatic energies in Table 1 demonstrate that

perturbation theory is quantitatively accurate for small Jahn−
Teller stabilization energies [(Dω) ≪ ω], smaller vibrational
quantum numbers v, and smaller magnitude pseudorotation
quantum numbers |j|. The Supporting Information contains a
more extensive table with more states, a larger range of Jahn−
Teller stabilization energies, and more accurate energies. The
energies there quantitatively reproduce those reported by
Longuet-Higgins et al.5 for pseudorotation quantum numbers j
= 1/2 and 3/2, all of which involve larger displacements than in
Table 1.

■ RESULTS
Figure 2 provides a complete characterization of the 12 lowest
nonadiabatic eigenfunctions for a “submerged” conical
intersection that is well below the zero point energy. These
12 eigenfunctions occur in degenerate pairs for the 6 lowest
energy levels in Table 1. The exact factorization is used to show
a positive amplitude and color is used to show the electronic
character, including all phase/sign information. At each point in

Table 1. Six Lowest Energy Eigenvalues for Small Jahn-Teller Stabilization Energies with ω = 200 cm−1

(Dω) [cm−1]

v |j| λ E(2) 0.01 0.1 1 5

0 1/2 0 ±1 ω − 2(Dω) 199.980 199.800 198.010 190.235
1 3/2 ±1 ±1 2ω − 4(Dω) 399.960 399.601 396.058 381.292
1 1/2 ±1 ∓1 2ω 400.000 400.000 399.980 399.516
2 5/2 ±2 ±1 3ω − 6(Dω) 599.940 599.401 594.143 572.999
2 1/2 0 ±1 3ω − 2(Dω) 599.980 599.800 598.030 590.718
2 3/2 ±2 ∓1 3ω + 2(Dω) 600.020 600.199 601.912 607.918
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the vibrational coordinate space, the electronic character and
phase are displayed as an electronic angle using eq 3. As in ref
26, isolated point nodes in the amplitude factor are always
accompanied by singularities in the electronic factor. The total
nonadiabatic eigenfunctions are single-valued and continuously
differentiable, apparent derivative discontinuities in the vibra-
tional amplitude on crossing through a vibrational node are
compensated by an electronic sign change at the electronic
singularity. The leftmost two columns show real-valued

degenerate eigenstates of σv, the rightmost two columns show
the real-valued linear combinations of these same two states
that are eigenfunctions of σd, and the middle column shows the
magnitude for either complex-valued linear combination of
these same two states with a signed pseudorotation quantum
number. The circular symmetry of the conical intersection is
reflected in the circularly symmetric magnitudes of the
complex-valued eigenstates with signed pseudorotation quan-
tum numbers. With respect to the sign of j, these

Figure 2. Three representations of the lowest 12 nonadiabatic eigenstates of the Hamiltonian with Jahn−Teller stabilization energy (Dω) = 10 cm−1

and vibrational frequency ω = 200 cm−1. The contours indicate the nonadiabatic amplitude factor and the colors (in columns 1, 2, 4, and
5) indicate the nonadiabatic electronic character |Km(q1,q2)⟩ using the color wheel in Figure 1. Together, these factors fully characterize real-valued
nonadiabatic eigenfunctions. For each eigenstate, the contours are at multiples of 10% of the maximum amplitude, with higher contour lines being
thicker. Because of the pairwise exact degeneracy, these states have been further specified using three noncommuting operators that each commute
with the Hamiltonian. The first two columns show real-valued eigenstates of the σv operator with eigenvalues of +1 and −1, respectively. These two
columns contain the complete set of the lowest 12 eigenstates. The middle column shows the circularly symmetric amplitude factor for complex-
valued eigenstates with a signed pseudorotation quantum number j. In this column, each panel also gives the vibrational quantum number v and the
energy in wavenumbers (cm−1) for its row. The fourth and fifth columns show the same complete set of the 12 lowest eigenstates as real-valued
eigenstates of σd, with eigenvalues of +1 and −1, respectively.
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eigenfunctions occur in degenerate pairs, but the real and
positive amplitude factor is independent of the sign of j and the
complex-valued electronic character is not shown (it would
require a different color wheel), so a single column suffices.
Precursors of half-odd-integral adiabatic pseudorotation are
already visible in the 3-fold and 5-fold symmetric vibrational
amplitude factors for the real-valued eigenfunctions with |j| =
3/2 and |j| = 5/2, respectively.
At the same time, the adiabatic electronic sign change (Berry

phase of ±π) required for a path circling the conical
intersection (see Figure 1) does not appear for the exact
total eigenfunctions in Figure 2. As noted by Longuet-Higgins
et al.,5 an adiabatic sign change in the electronic factor must be
compensated by a sign change in the nuclear factor so that their
product is an overall single-valued total wave function. The
single-valued total eigenfunctions in Figure 2 are not confined
to a single adiabatic surface and are far from the adiabatic limit.
Around the conical intersection, each nonadiabatic eigenfunc-
tion makes an integer number of circuits around the electronic
color wheel (as required by continuity).
The v = 0, j = 1/2 zero point eigenstates and higher j = 1/2

states in Figure 2 all have nonzero amplitude at the origin,
where the conical intersection is located. The higher |j| = 1/2
states have “accidental” conical nodes in different locations for
σv and σd eigenstates. These disappear for circularly symmetric
pseudorotation eigenstates. For example, in Figure 2, v = 1, |j| =
1/2 and v = 2, |j| = 1/2 have 1 and 2 accidental conical nodes,
respectively. These “accidental” conical nodes arise in the same
way as the “accidental” conical nodes in ref 26.
All |j| = 3/2 states have 3-fold symmetry in the amplitude

factor and “essential” conical nodes at the conical
intersection. We call these nodes essential because they occur at
the same location for eigenstates of all three noncommuting
operators. For all essential nodes, the absolute numerical
eigenfunction amplitudes at the origin are less than 2 × 10−14.
In addition to the essential conical node, the higher |j| = 3/2
states have accidental conical nodes away from the origin; v = 2,
|j| = 3/2 in Figure 2 has three accidental conical nodes. Circling
each conical node by itself, the electronic character makes one
circuit around the color wheel.
The essential node at the origin of the 5-fold symmetric

amplitude for v = 2, |j| = 5/2 is not conical, as can be
seen from the contour spacings. For this single node, the
electronic character makes two circuits around the color wheel.
These properties are connected and will be explored below
after investigating the |j| = 1/2 levels.
For the zero point level and all states with pseudorotation

quantum number |j| = 1/2, Figure 2 shows nonzero probability
amplitude on top of the conical intersection at the origin.
Furthermore, the maximum probability amplitude is off-center
for the real-valued eigenfunctions. Table 1 shows that the
perturbation theory errors in energy are small for the zero point
level. Therefore, perturbation theory should be useful for
understanding the off-center maximum in the zero point
probability density indicated by Figure 2.
Figure 3 shows the zero point eigenstate’s exact factorization

and its projections onto the diabatic basis states for Jahn−Teller
stabilization energies of (Dω) = 5 cm−1 and (Dω) = 20 cm−1.
In first-order perturbation theory, the zero-point basis state
with σv = +1 becomes

ψ = | = = ⟩| ⟩

− | = = ⟩| ⟩

− | = = ⟩| ⟩

x

d x

d y

v 0, v 0

( /2 ) v 1, v 0

( /2 ) v 0, v 1

x0,0,
(1)

1 2

1/2
1 2

1/2
1 2 (8)

In eq 8, all one-dimensional harmonic oscillator basis states are
centered on the origin. For (Dω) = 5 cm−1, normalizing this
approximation yields projections that are visually indistinguish-
able from the exact projections at the scale shown.57 The crucial
insight from Figure 3 is that the off-center maximum occurs at
(q1,q2) = (−d,0) for the σv = +1 eigenstate. Quantitatively, the
maxima in Figure 3 occur at −0.220 (for d = 0.224) and −0.425
(for d = 0.447); the position of the maximum approaches −d
quantitatively as d decreases, exceeding three digit accuracy for
d = 0.1. Perturbation theory also correctly indicates that the off-
center maximum occurs at (+d,0) for the σv = −1 zero point
eigenstate, (0,−d) for σd = +1, and (0,+d) for σd = −1. The
real-valued zero point eigenstates are driven off-center by the
Jahn−Teller stabilization energy and have their maximum
probability density near the equilibrium displacement of their
dominant electronic basis state (so long as that displacement is
small).
For this high symmetry model, the location and number of

the “accidental” conical nodes are not truly accidental. For
example, the accidental nodes for j = 3/2 states occur in sets of
3 at a common radius and have predictable angles for each
reflection symmetry. Similarly, the higher j = 1/2 states with
vibrational quantum number v have v accidental conical nodes.
These nodes occur along the q1 axis for σv eigenstates and along
the q2 axis for σd eigenstates. Using the reflection symmetry
dependent equilibrium displacements found in the discussion

Figure 3. Exact factorization (top row) and coordinate-dependent
projections of zero-point eigenstates with σv = +1 onto the diabatic
electronic basis states (bottom row) for two different Jahn−Teller
stabilization energies (Dω) with vibrational frequency ω = 200 cm−1.
The factorization is plotted as in Figure 2. Both diabatic projections
are overlaid using the color wheel in Figure 1. Positive projections
⟨q1,q2⟨x|ψ0⟩ have solid magenta contours at 10% of . Projections
⟨q1,q2⟨y|ψm⟩ have solid orange 10% contours when positive, dashed
blue 10% contours when negative, and a dot-dashed white line
marking the node. The solid white vertical lines mark q1 = 0. The
dashed white vertical lines mark q1 = −d, the equilibrium vibrational
displacement of |x⟩. (Left column) (Dω) = 5 cm−1 [d = (1/20)1/2 ≈
0.2236]. (Right column) (Dω) = 20 cm−1 [d = (1/5)1/2 ≈ 0.4472].
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of the zero point states above, the locations approximate the
zeroes of displaced one-dimensional harmonic oscillator
eigenfunctions with v1 = v (for σv eigenstates) and v2 = v
(for σd eigenstates). The higher states (see the Supporting
Information) reveal more systematic patterns. The number of
accidental axial and radial node distances is (v − |j| + 1/2) and
each radial node distance has 2|j| nodes, so that the total
number of accidental nodes is 2|j|(v − |j| + 1/2). (This result
has limited generality because the isotropic 2D harmonic

oscillator quantum number v goes bad in the adiabatic limit.)
For the same reasons stated in ref 26, these accidental nodes
have the shape of right elliptical cones with the node at the
vertex. For every state examined, their principal axes are
observed to be radial and angular, with the minor axis in the
radial direction. In short, the “accidental” conical nodes are
consequences of the circular symmetry of the model.
Figure 4 shows the projections of 4 nonadiabatic

eigenfunctions onto the diabatic electronic basis states. Nodes

Figure 4. Coordinate dependent projections of 4 nonadiabatic eigenstates onto the diabatic electronic basis states, all shown as eigenstates of σv with
eigenvalue +1. Using the color wheel in Figure 1, projections ⟨q1,q2⟨x|ψm⟩ have solid magenta contours when positive and dashed green contours
when negative, with white dotted lines marking zero. Each projection is overlaid with the corresponding projection ⟨q1,q2⟨y|ψm⟩ which is solid orange
when positive, dashed blue when negative, and dot-dashed white when zero.

Figure 5. Close up view around the origin for the σv = +1 eigenstates in Figure 4. (Top row) Exact factorization with positive contours for the
amplitude factor and color for the electronic character |Km(q1,q2)⟩ using the color wheel in Figure 1. (Bottom row) Overlaid coordinate
dependent projections onto the electronic basis states ⟨q1,q2⟨x|ψm⟩ (using solid magenta contours for positive amplitude, dashed green contours for
negative amplitude, and dotted white curves for zero) and ⟨q1,q2⟨y|ψm⟩ (using solid orange contours for positive amplitude, dashed blue contours for
negative amplitude, and dot-dashed white curves for zero). The contour levels change from panel to panel. (v = 0, |j| = 1/2) in the leftmost column
has no node, and the exact factorization contours are at 0.05% intervals from 95.15% to 95.65%, the x-projection contours are at 0.05% intervals from
95.15% to 95.65% of , and the y-projection contours are at 0.05% intervals of around 0. (v = 1, |j| = 3/2) has a conical node, and the contour
intervals are 0.2% of for the exact factorization and the projections. (v = 2, |j| = 5/2) has a quadratic node and contour intervals of 2 × 10−5 .
(v = 3, |j| = 7/2) in the rightmost column has a cubic node and contour intervals of 2 × 10−7 .
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in each projection are shown as dotted and dot-dashed white
lines. When two white lines from different projections cross, the
amplitude on both basis states must be zero so that the
nonadiabatic eigenfunction must have a node; this occurs only
at the origin for these states. Figure 4 illuminates how half-odd-
integer avoided angular nodes arise from integer angular nodes
in the underlying projections. The lowest states with j = 3/2,
5/2, and 7/2 have 1, 2, and 3 angular nodes through the origin
in each projection, respectively, giving a total of 4, 8, and 12
angular half nodes over both projections. In each case, half of
an angular node along the negative q1 axis disappears under a
negative minimum in the x projection. This leaves 3 angular
half nodes for j = 3/2, which all become avoided half nodes. For
j = 5/2 and 7/2, angular node halves curve close together in 2
and 4 pairs, respectively, to reduce the number of angular
avoided half nodes to 5 and 7. Figure 5 zooms in to reveal the
nodal behavior near the origin.
Figure 5 shows how, for increasing values of the

pseudorotation quantum number, the essential nodes at the
origin have an increasing order. In the exact factorization (top
panels), this order can be easily characterized by the number of
rotations around the electronic color wheel. The order can also
be characterized by the radial spacing of the contours, which are
evenly spaced in amplitude for each panel. From left to right: v
= 0, j = 1/2 has no node and the electronic character does not
circle the color wheel (0th order): v = 1, j = 3/2 has a right
circular conical node with its vertex at the origin, the even
spacing of contours with radius indicates a linear amplitude
proportional to ρ and the electronic factor makes one circuit
around the electronic color wheel, so this is a first order node;
for v = 2, j = 5/2, the growth in contour spacing with radius
quantitatively indicates a quadratic amplitude proportional to ρ2

and the electronic factor makes two circuits around the color
wheel, so this is a second order node; for (v = 3, j = 7/2), the
contours have a cubic amplitude growing as ρ3 for small ρ and
the electronic factor makes three circuits around the color
wheel, so this is a third order node. The coordinate dependent
projections of the eigenstates onto diabatic basis states in the
bottom panels provide insight into these orders. Except for the j
= 1/2 state, the number of angular nodes in each projection
matches the order. At the conical node in (v = 1, j = 3/2), one
nodal line on |x⟩ intersects one nodal line on |y⟩. At the
quadratic node in (v = 2, j = 5/2), two nodal lines on |x⟩ and
two nodal lines on |y⟩ all intersect. For the cubic node in (v = 3,
j = 7/2), there are three nodal lines on each state that all
converge on the origin. The essential nodes at the conical
intersection are consequences of circular symmetry, for which
higher vibrational angular momentum requires higher radial
powers in the amplitude.
In Figure 5, higher order nodes at the conical intersection

exhibit a link between the radial exponent for the vibrational
amplitude factor and the number of circuits around the
electronic color wheel at small ρ, both are given by |j| − 1/2,
where j is the pseudorotation quantum number. This linkage
can be proven based on a conserved pseudorotation quantum
number. With a conserved pseudorotation quantum number
and electronic angular momentum projection quantum
numbers of λ = ±1, an eigenstate with a given signed

λ= +j ( /2) can have contributions from basis states with
only two signed vibrational angular momentum quantum
numbers, = ±j (1/2). Thus, | | = | | −j (1/2)min . Around the
origin, the local behavior of the eigenstates for the isotropic

two-dimensional harmonic oscillator is given by the power
series term of lowest order, which is proportional to
ρ ϕ| | iexp( ). The two degenerate eigenstates have lowest
order terms proportional to

ψ ρ ϕ ρ ϕ∼ ± | | | ⟩ ± | ⟩| | i x i y( , ) exp( )[ ]/2jv, min
1/2min

(9)

In eq 9, the symbol ∼ means leading order proportionality in
the limit as ρ → 0. Equation 9 proves that essential nodes have
true zeros in eigenfunction amplitude at the conical
intersection. Linear combinations can give real-valued eigen-
functions with a local behavior of

ψ ρ ϕ ρ ϕ α

ρ ϕ α

∼ | | − | ⟩

− | | − | ⟩

| |
| |

| |

x

y

( , ) cos( )

sin( )

jv, min

min

min

min (10a)

and

ψ ρ ϕ ρ ϕ α

ρ ϕ α

∼ | | − | ⟩

+ | | − | ⟩

| |
| |

| |

x

y

( , ) sin( )

cos( )

jv, min

min

min

min (10b)

where α is an arbitrary reflection symmetry plane angle. The σv
eigenstates have α = 0, and the σd eigenstates have α = π/4.
The σv = +1 [σv = −1] eigenfunctions in Figure 2 follow eq 10a
[eq 10b] with α = 0 and | | = | | −j 1/2min . Inserting eq 10 into
eqs 1−3 gives

and

ρ ϕ ϕ αΘ ∼ − | | −| |( , ) ( )jv, min (12a)

for the σv = +1 eigenfunctions in eq 10a or

ρ ϕ ϕ α πΘ ∼ − | | − +| |( , ) ( ) /2jv, min (12b)

for the σv = −1 eigenfunctions in eq 10b.
We now define the “electronic index” η(C) through a line

integral around any simple closed counterclockwise path C that
does not pass through a node,

∮η
π

= ΘC d q q( )
1

2
( , )

C
m 1 2 (13)

In pictorial terms, the electronic index is equal to the number of
counterclockwise spins around the color wheel on the path of
integration. With this definition, the electronic index is
independent of the arbitrary overall sign of the eigenfunction
[by the definition of Θm in eq 3] and the arbitrary phase α but
does depend on the phase convention for the electronic basis
states |x⟩ and |y⟩. In other words, electronic indices are
significant relative to each other, even for different eigenstates.
Since the nonadiabatic eigenfunctions are real-valued, con-
tinuous, and differentiable, they form a differentiable vector
field (see ref 58) of electronic state vectors over the vibrational
coordinates (this is why Θm is defined in terms of ψm). The
electronic index is the index of this vector field over the
oriented planar surface of vibrational coordinates. This has two
consequences: first, the electronic index is an integer (a result
also required by single-valued wave function continuity);
second, the electronic index depends only on the number,
order, and sign of the nonadiabatic nodes enclosed by the path
(a new result). The electronic indices for paths that circle only
the essential node at the conical intersection can be obtained
from eqs 12 and 13 using a path at small constant radius so that
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ρ ϕ ϕΘ = −| || |d d( , )jv, min and η = −| |C( ) min or by visual
inspection of Figure 2. The electronic indices around the
conical intersection are η(C) = 0 for (v = 0, |j| = 1/2), η(C) =
−1 for (v = 1, |j|= 3/2), η(C) = 0 for (v = 1, |j| = 1/2), η(C) =
−2 for (v = 2, |j| = 5/2), η(C) = 0 for (v = 2, |j| = 1/2), and
η(C) = −1 for (v = 2, |j| = 3/2).
Locally, the vibrational radial exponent and the electronic

index have precisely the same magnitude and define the order
of the essential node as | | = | | −j 1/2min . Furthermore, the
sign of the electronic index for a sufficiently small loop around
the origin is the same for all essential nodes. Remarkably, the
essential node signs are all opposite the sign of the conical
intersection, which is defined by the sign of the counter-
clockwise line integral around the conical intersection:

∫γ
π

= ΘC d q q( )
1

2
( , )

C

a
1 2 (14)

In eq 14, Θa is the adiabatic electronic mixing angle. [2πγ(C)
has been called the Longuet-Higgins phase59 and is an integer
multiple of π for two real-valued electronic states. When 3
electronic states are involved, the geometric phase defined
through the nonadiabatic derivative coupling6,60 has been
reported to differ from exact integer multiples of π,61 but it
converges to the Longuet-Higgins phase for infinitesimal
loops.59−61] The line integral can either start and stop at the
discontinuity for a single-valued Θa or be closed for a double-
valued Θa (half-integer line integrals are possible because the
adiabatic electronic eigenfunctions do not form a dif ferentiable
vector field over an oriented surface). The sign of a conical
intersection, sgn(γ), has the same dependence on the phase
convention for the electronic basis set as the electronic index
(and no dependence on arbitrary adiabatic eigenfunction sign
or phase). The line integral around the conical intersection in
Figure 1 is γ(C) = +1/2, so the sign of the conical intersection
is positive; it is independent of which adiabatic surface (upper
or lower) is used to evaluate it. As a result, the sign of a conical
intersection is meaningful relative to the electronic indices for
all nodes. The sign of the conical intersection can be reversed
by reversing the sign of the Jahn−Teller displacement d in
either the diagonal or off-diagonal Jahn−Teller coupling term
in the Hamiltonian. Figure 6 shows the adiabatic surfaces and
the lowest energy 6 nonadiabatic eigenstates of σv for a conical
intersection with a negative sign generated by reversing the sign
of the diagonal coupling. All of the equilibrium displacements
along q1 are reversed with respect to Figure 2, and all of the
conical node signs are reversed.
In contrast to a submerged conical intersection, a high energy

conical intersection will push the amplitude away from the
origin on the lower surface. In the isotropic 2D harmonic
oscillator basis, this involves cancellation of the lowest order
radial powers between basis states with the same vibrational
angular momentum but different vibrational quantum
numbers v [for example, cancellation of the constant radial
term between = =(v 0, 0) and = =(v 2, 0)]. Thus, |j| −
1/2 is a lower bound on the radial power law exponent for the
vibrational amplitude near the origin. For adiabatic eigenfunc-
tions confined to the lower surface, which require a high conical
intersection, various models indicate that the lowest radial
power law exponent must exceed 1/2 (ref 62),

+(1/2) 1/2 (ref 63) or 5/2 (ref 64).
This proves that, near the origin, all eigenstates of the circular

symmetry conical intersection have a vibrational amplitude

factor with a radial power law exponent of at least |j| − 1/2 and
an electronic factor that circles the electronic color wheel
exactly |η(C)| = |j| − 1/2 times. This allows states with |j| = 1/2
to have nonzero amplitude at the conical intersection, proves

Figure 6. (Top) Adiabatic potential energy surfaces and coordinate
dependent electronic character for a model Hamiltonian in which the
sign of the Jahn−Teller displacement along q1 has been reversed
compared to Figure 1. All other parameters are the same as in Figure 1.
In contrast to Figure 1, a counterclockwise path around either
adiabatic surface now rotates halfway around the color wheel in a
clockwise direction. (Bottom) The 6 lowest energy real-valued
eigenstates of σv with reversed displacement along q1. All other
parameters are the same as in Figure 2. For each eigenstate, the sense
of rotation around the color wheel is reversed in comparison to the
corresponding eigenstate in Figure 2.
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that states with |j| = 3/2 can have conical nodes with the form
of a right circular cone at the conical intersection, and
establishes the linked vibrational-electronic form of the higher
order nodes at the conical intersection. Circular symmetry was
assumed for the above proof; the results may not apply for
lower symmetry conical intersections.
It was proven above that the essential nodes at the conical

intersection all have the same sign for the local electronic index.
The accidental conical nodes do not. For example, the (v = 2, |j|
= 1/2) states in Figure 2 have two oppositely signed nodes,
such that the electronic index is zero for any path that
encompasses them both. All of the conical nodes in ref 26 occur
in such oppositely signed pairs. However, any counterclockwise
circuit that encompasses all 4 conical nodes in (v = 2, |j| = 3/2)
has an electronic index of η(C) = +2. This addition of
electronic indices for the 4 conical nodes is precisely analogous
to the addition of geometric phase line integrals for the 4
conical intersections in the linear plus quadratic E⊗e C3v Jahn−
Teller coupling treated by Zwanziger and Grant.17 Here, it
arises because the conical node at the origin has an electronic
index of −1 while the three accidental conical nodes have
electronic indices of +1, so that the sum of the enclosed
electronic indices is +2. Note that this eigenstate has = ±2
and λ = ∓1, so that λ = −2. For every state examined (all
states through v = 4), the signed large radius electronic index is
equal in magnitude and opposite in sign to λ γsgn( ), where
sgn(γ) is the sign of the conical intersection [sgn(γ) = +1 in
Figure 1]; this is proportional to the electronic-vibrational
angular momentum coupling term in the second-order
perturbation theory eigenstate energies of eq 7.

■ DISCUSSION

The results obtained here directly address questions about wave
function amplitude around conical intersections. Mead has
shown that single-surface eigenfunctions must approach zero at
a conical intersection in two-dimensions.62 Varandas and Xu
have provided analytic support for this result in X3 molecules.64

For a pure conical intersection potential, Yarkony found that
the eigenfunctions approach zero at the conical intersection.63

The above treatments do not directly address systems for which
the conical intersection is weak or submerged.
Weak or submerged conical intersections are, as mentioned

in the Introduction, common in molecular Jahn−Teller
distortions. In such circumstances, nonadiabatic eigenfunctions
can span more than one adiabatic surface, as in the pioneering
study by Moffitt and Liehr.4 Although a different basis and
phase convention are used, the perturbation theory results of
Moffitt and Liehr [their eqs 36 and 38] are equivalent to eq 8.
For the zero point level, these expressions place large amplitude
at the conical intersection, and this amplitude is continuously
present with the same sign as the Jahn−Teller displacement d is
tuned through 0 (where the zero point eigenfunction becomes
the zero point level for an isotropic two-dimensional harmonic
oscillator, which guarantees a nonzero amplitude on the conical
intersection). This example (which is 60 years old) thus
concretely illustrates nonzero nonadiabatic eigenfunction
amplitude at a conical intersection, a phenomenon discussed
in refs 33 and 23.
The large wave function amplitude at the origin for low

energy eigenstates of a submerged conical intersection with
circular symmetry suggests similar amplitude at the submerged
lower symmetry D4h conical intersection for the silicon

naphthalocyanine studied in refs 30−32. This actual sampling
of the high symmetry geometry contrasts with the high
symmetry average geometry produced by interconversion
among equivalent low symmetry geometries18 (often while
avoiding the high symmetry geometry19) in the dynamical
Jahn−Teller effect. Evidently, nonzero wave function amplitude
at the high symmetry geometry may be anticipated for the
ground vibrational state in many molecules with weak
dynamical Jahn−Teller effects.
As the analysis of Figure 3 shows, the zero-point state’s

maximum amplitude follows the Jahn−Teller displacement
away from the conical intersection. Thus, even with the highest
possible Jahn−Teller symmetry, the average geometry of one
degenerate eigenstate is not necessarily the undistorted high
symmetry geometry (though averaging over both degenerate
eigenstates always restores the high symmetry). As the Jahn−
Teller stabilization energy increases, these nonadiabatic results
are apparently heading toward agreement with the adiabatic
results for a conical intersection with sufficiently high energy to
confine low energy eigenstates onto the lower adiabatic surface.
However, to form a complete basis, some eigenstates with
sufficiently high energy must have eigenfunction amplitude in
an arbitrarily small region around the conical intersection.
Figure 7 shows how the nonadiabatic eigenfunctions for v =

1, |j| = 3/2 begin approaching the limit of adiabatic
pseudorotation. For small Jahn−Teller stabilization energy,
there is a conical node at the origin and three strongly avoided
angular half nodes. These nonadiabatic eigenfunctions are
everywhere single-valued and continuous, with continuous
derivatives, the apparent derivative discontinuities in the
amplitude crossing through the origin are compensated by
the electronic sign change. Their 2π angular periodicity
corresponds to the adiabatic product of compensating
electronic and vibrational factors with half-odd-integral angular
momenta,5,43 so the Longuet-Higgins phase is hidden. As the
height of the conical intersection increases, the conical node at
the origin starts to connect three weakly avoided angular half
nodes that will become the three angular half nodes in the
adiabatic limit. In the projections onto the diabatic states, the
incipient formation of adiabatic nodes is associated with the
dotted nodal curve on |x⟩ that is moving in from the right.
Forming true angular half-nodes for the adiabatic limit will
require that this nodal curve on |x⟩ precisely coincide with the
nodal curve on |y⟩ (dot-dashed). Until this additional node
coincides exactly, the derivation showing how conical nodes
arise from crossing between nodes in the two separable
electronic projections26 applies at sufficiently short-range.
These observations for the lowest eigenstates suggest that,
relative to the vibronic energy, the conical intersection energy is
crucial for limiting nonadiabatic eigenfunction amplitude there
(at least from a diabatic perspective). An understanding of the
submerged conical intersection limit with lower symmetry may
be useful for investigating questions about adiabatic eigenfunc-
tion behavior when there is nonadiabatic amplitude at a conical
intersection23 and examining the transition from adiabatic to
nonadiabatic tunneling.35

The above observations about the signs of nonadiabatic
nodes deserve some comment. Examples above show a closed
path that encircles two conical nodes can give an electronic
index of −2, 0, or 2. The sum rule suggests that two
overlapping conical nodes of the same sign might merge into a
second order node, that second order nodes might split into
two conical nodes of the same sign, and that oppositely signed
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conical nodes can be created or annihilated as model
parameters are varied. Zwanziger and Grant showed that a
path enclosing 4 conical intersections with a net sign of 2 gives
rise to a Renner-Teller effect.17 This suggests that, just as
conical nodes are in many ways analogous to conical
intersections,26 second order nonadiabatic nodes may be
analogous to Renner−Teller intersections between electronic
states.
Analogies between the dimensionality dependence of conical

intersections and the dimensionality dependence of conical
nodes26 both suggest the above results may depend on the

dimensionality of the Jahn−Teller conical intersection. Since
electronic dimensionality determines whether the geometric
phase around a finite loop is exactly equal to the Longuet-
Higgins phase,59−61 such an investigation may be delicate. We
have not yet investigated the vibrational and electronic
dimensionality dependence of nonadiabatic nodes at conical
intersections.

■ CONCLUSIONS

The conical intersection with circular symmetry investigated
here is submerged below the zero point level so that
eigenfunctions are not confined to a single surface. The
nonadiabatic eigenfunctions can have nonzero amplitude at a
conical intersection. The zero point levels have their maximum
amplitude near the Jahn−Teller displacement, approaching it
more accurately as the Jahn−Teller displacement goes to zero.
Around the conical intersection, the lowest order essential node
in the nonadiabatic eigenfunctions has the form of a right
circular cone, and its vertex is a node at the conical intersection.
For nonadiabatic eigenfunctions, electronic indices have been
defined through line integrals around simple closed counter-
clockwise paths and proven to be integers. Circular conical
nodes and higher order nodes at the conical intersection occur
with a lowest radial power law exponent equal to the absolute
value of the electronic index for a sufficiently small path around
the conical intersection. The total number of additional nodes
surrounding the conical intersection is found to be 2|j|(v − |j| +
1/2) so long as the 2D harmonic oscillator vibrational quantum
number v is good. Nonadiabatic nodes have a sign manifested
in their electronic index, and the sign of the nonadiabatic nodes
at the conical intersection is always opposite the sign of the
conical intersection. The electronic index is equal to the sum of
the electronic indices for all nodes inside the simple closed
path. So long as the 2D harmonic oscillator vibrational angular
momentum quantum number remains good, the electronic
index at a radius sufficient to enclose all of the nodes
enumerated above is η λ γ= −C( ) sgn( ), where λ governs the
perturbative energy from vibrational−electronic interaction and
sgn(γ) is the sign of the conical intersection. The results about
nonzero amplitude at a conical intersection, the signs and
electronic indices of nonadiabatic nodes, and the sum rule for
the electronic indices are independent of the circular symmetry
and submerged nature of the conical intersection studied here.
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